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Abstract—Set similarity search, aiming to search the similar
sets to a query set, has wide application in today’s recommenda-
tion services. Meanwhile, the rapid advance in cloud technique
has promoted the boom of data outsourcing. However, since the
cloud is not fully trustable and the data may be sensitive, data
should be encrypted before outsourced to the cloud. Undoubtedly,
data encryption will hinder some basic functionalities, e.g., set
similarity search. For achieving set similarity search over en-
crypted data, many solutions were proposed, yet they either only
satisfy weak security requirements, or only achieve approximate
similarity, or have low efficiency or under the model of two
cloud servers. Therefore, in this paper, we propose a new efficient
and privacy-preserving exact set similarity search scheme under
a single cloud server. Specifically, we first design a symmetric-
key predicate encryption (SPE-Sim) scheme, which can support
similarity search over binary vectors. Then, we represent the set
records to be binary vectors and employ the B+ tree to build an
index for them. After that, based on SPE-Sim and the B+ tree
based index, we propose our scheme and it can achieve efficient
set similarity search while preserving the privacy of set records
and query contents. Finally, security analysis and performance
evaluation indicate that our scheme is privacy-preserving and
efficient.

Index Terms—Privacy-preserving, Exact set similarity search,
Jaccard similarity, Predicate encryption, B+ tree.

I. INTRODUCTION

The widespread application of information and communi-
cation technology has continuously promoted the explosive
growth of data in various fields, such as smart home [1],
eHealthcare [2], vehicular networks [3]. As predicted in [4],
the global big data market will grow from $18.3 bn in 2014
to an incredible $92.2 bn by 2026. The boom of the data and
the advance of cloud technique motivate an increasing number
of individuals and organizations to outsource their data to the
powerful cloud. However, since the data may contain some
sensitive information, and the cloud storage data breaches
happened from time to time due to attacks, malfunctions or
misconfigurations, such as Dropbox password leak [5], it is
not reliable to pin the cloud to protect the data confidentiality.
An alternative solution to protect the data confidentiality in
cloud is that the data owners deploy the encryption technique
to encrypt the data before outsourcing them to the cloud [2],
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[6]. Nevertheless, the data encryption inevitably affects some
basic functionalities on the data. Among these functionalities,
the set similarity search is one of the most popular searches,
which aims to search the similar sets to a given query set,
and serves as the basis of today’s collaborative filtering and
recommendation services [7]-[10]. For example, the video and
music service providers like YouTube, Netflix and Spotify can
recommend some videos and songs to a specific user based
on preferences of users similar to him/her.

In the literature, many studies have been dedicated to solve
the similarity search over encrypted data and several privacy-
preserving similarity search schemes have been proposed.
Those schemes can be generally categorized into three types,
i.e., (i) homomorphic encryption based schemes [11], [12];
(ii) order preserving encryption based schemes [13], [14];
and (iii) symmetric searchable encryption (SSE) and locality-
sensitive hashing (LSH) based schemes [15]-[17]. However,
most of them cannot well balance the query efficiency, security
and accuracy. Specifically, the homomorphic encryption based
schemes [11], [12] can achieve strong security, but they
are computationally inefficient due to the time-consuming
homomorphic encryption. The order preserving encryption
based schemes [13], [14] are efficient in terms of similarity
query, but the security of the two schemes are weak, because
the employed order preserving encryption will leak the order
information of the plaintext data.

For the SSE and LSH based schemes [15]-[17], they can
just provide approximate similarity query rather than the exact
one because the idea of LSH is to map similar data records
to the same hash value. The “exact similarity search” means
that the query results only contains the data points satisfying
the search criteria. Nevertheless, in the SSE and LSH based
schemes [15]-[17], the query results may contain false positive
points. To achieve exact SSE and LSH based similarity search
schemes, Zheng et al. [18] and Cui et al. [19] introduced
Yao’s garbled circuits [20] to filter the query result returned by
the SSE and LSH based similarity search schemes. Although
the similarity search schemes [18], [19] can return the exact
query result, they were built under the model of two cloud
servers. However, in order to reduce the cloud bills, the data
owners may prefer to deploy a single cloud server in some
real scenarios. Therefore, how to achieve exact efficient and
privacy-preserving similarity search under the model of a
single cloud server is still challenging.

Aiming at the above challenges, in this paper, we introduce
a symmetric-key predicate encryption technique and B+ tree
to propose an efficient and privacy-preserving exact set sim-
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ilarity search (SetSim) scheme under a single cloud server.
Specifically, our contributions are three folds:

e First, we design a symmetric-key predicate encryption
scheme supporting similarity search over binary vectors (SPE-
Sim). In the SPE-Sim scheme, the data records are d-
dimensional binary vectors, and are encrypted to be cipher-
texts by an asymmetric scalar-product-preserving encryption
(ASPE) technique. When performing the similarity search, a
query token corresponding to the query vector and similarity
threshold is generated, and it can be used to access the data
records satisfying the query condition. Meanwhile, the Jaccard
similarity, specially designed for measuring the similarity
between two sets, is considered to be the similarity metric
in the SPE-Sim scheme (defined in Subsection III-A).

e Second, we represent the set records to be binary vectors
and employ the B+ tree to build an index for them. Then,
based on the SPE-Sim scheme and B+ tree based index, we
propose an efficient and privacy-preserving exact set similarity
search scheme under a single cloud server. Our proposed
scheme can achieve high efficiency in set similarity search
while preserving the privacy of the set records, the query set
as well as the similarity threshold.

e Third, we extensively analyze the security of our proposed
scheme and also evaluate its performance. The results show
that our proposed scheme is indeed privacy-preserving and
efficient.

The remainder of this paper is organized as follows. We first
define our models and design goals in Section II, and describe
some preliminaries in Section III. In Section IV, we present
our scheme, followed by security analysis and performance
evaluation in Section V and Section VI, respectively. Finally,
we describe the related work in Section VII and draw our
conclusion in Section VIII.

II. MODELS AND DESIGN GOALS

In this section, we formalize the system model, security
model, and identify design goals considered in this paper.

| Return the sets that satisfy :
1 J(S;,Q) =8, where Q is the !
i query set and § is the threshold 3
3 of the similarity. 1

| Set Records. |
' i
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Fig. 1: System model under consideration

A. System Model

In our system model, we consider a cloud-based set similar-
ity search model, which is comprised of three types of entities,
namely a data owner, a cloud server and a set of query users,
as shown in Fig. 1.

e Data Owner: The data owner has a collection of sets,
denoted by S = {51, 5o, -, S, }, and each S; € S is a subset
of £, 1e., S; C &, where £ = {e,ea,- -+, eq} is the collection
of all elements. Since the data owner has limited storage space
and computing capability, he/she prefers to resort to a powerful
cloud server to store and manage his/her data. However, as
the cloud server is not always fully trustable and the data may
contain some sensitive information, in order to preserve the
privacy of the data, the data owner tends to encrypt the data
before outsourcing them to the cloud.

o Cloud Server: The cloud server has abundant storage
space and powerful computing capability, which is deployed
as a link between the data owner and the query users. On the
one hand, it provides the storage service to the data owner,
i.e., store the outsourced data for the data owner. On the other
hand, it also offers the set similarity query service to the query
users. In specific, upon receiving a query set  C & and
a similarity threshold § from a query user, the cloud server
can search the outsourced sets and return a collection of sets
whose similarity with Q) is equal to or greater than §, i.e.,
{Si € S[J(Q, Si) > 0}

o Query Users U = {Uy,Us,---}: The query users can
enjoy the set similarity search service from the cloud server,
i.e., they can search the sets whose similarity with a given
set Q) is equal to or greater than a threshold §. At the same
time, the query users must be authorized by the data owner
before they are eligible to enjoy the set similarity search
service. In other words, only the authorized users can receive
the returned sets from the cloud server after sending a set
similarity search request. The data owner can authorize a query
user by respectively distributing two parts of the authorization
key to the cloud server and the query user as shown in Fig. 1.

B. Security Model

In our security model, the data owner is considered to be
honest and he/she will sincerely follow the protocol to encrypt
the sets and outsource them to the cloud server. However,
the cloud server is considered to be honest-but-curious, i.e.,
it will honestly follow the protocol but may be curious about
some private information. In specific, it will honestly store the
outsourced data for the data owner and offer the set similarity
query service to the query users. Nevertheless, it may be
curious about the plaintext of the encrypted sets stored in the
cloud. At the same time, when processing the set similarity
search requests from the query users, it may be also curious
about the plaintext of the query set ), the threshold 6, as well
as the query results (the sets whose similarity to () is equal to
or greater than §). For the query users, the authorized users are
considered to be honest, while the unauthorized users are likely
to launch malicious passive attacks, e.g., eavesdropping, when
they are curious about some private information or expected to
enjoy the set similarity search service from the cloud server.
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In addition, we consider there is no collusion between the
cloud server and the query users. Note that there may be
other passive or active attacks (e.g. denial of service and data
pollution attacks), which are beyond the scope of this work
and will be exploited in our future work.

C. Design Goals

In this paper, our goal is to design an efficient privacy-
preserving set similarity search scheme under our system mod-
el and security model. In particular, the following objectives
should be satisfied.

e Privacy Preservation: The fundamental requirement of the
proposed scheme is the privacy preservation, i.e., the encrypted
sets stored in the cloud, the query set () and the similarity
threshold § from the authorized query users, as well as the
query result should be kept secret from unauthorized entities,
including the cloud server and unauthorized users.

e [Efficiency: In order to achieve the above privacy re-
quirement, additional computational cost will be inevitably
incurred, i.e., processing the set similarity search request over
the encrypted data will undoubtedly increase the computa-
tional cost compared with those doing over the plaintext sets.
Therefore, in the proposed scheme, we also aim to minimize
the computational cost of processing the set similarity search
request.

III. PRELIMINARIES

In this section, we first formally define the problem of exact
set similarity search and briefly review the ASPE technique,
which will be used in our proposed scheme. After that, we
present the overview of our SPE-Sim scheme and formally
define its security. In order to facilitate the narrative, we first
list some used notations in Table I.

A. Definition of Exact Set Similarity Search

Suppose that S = {S1,Sa,---,5,} is a collection of sets
and each set S; € S is a subset of &, ie., S; C &, where
E = {ey,e9, - ,eq} is the collection of all elements. The
exact set similarity search can be defined as follows.

Definition 1 (Exact set similarity search): Given a query
set (), the exact set similarity search allows the user to search
the collection of sets S and find out the sets that are similar
to the query set ). The similarity criterion can be defined in
two ways [8].

o Top-k set similarity search: it returns the top k sets that

are the most similar to the query set;

e Set similarity range search: given a similarity threshold

0, it returns the sets whose similarity to the query set is
equal to or greater than §.

Meanwhile, the similarity between two sets can be measured
in various metrics, such as Jaccard similarity, Inner product
similarity, Euclidean distance, etc. [8]. Due to its popularity
for measuring the set similarity, Jaccard similarity is deployed
as the similarity metric in our scheme. For different types of
data records, the Jaccard similarity can be defined in different

ways. In the following, we respectively introduce the Jaccard
similarity definitions over set records and binary vectors.

o For the set records S; and S;, the Jaccard similarity
between them can be defined as

_ 15N 5|
|Sl @] SJ|

o For two d-dimensional binary vectors b; and bj, the
Jaccard similarity between them can be defined as

B b; o b;

~ [bi| + [bs — b; o b

J(Si, ;) )

J(bi’ b.i)

2

where “o” denotes the inner product operation, |b;| =
bi ] bi, and |bJ| = bj o bj.
Note that each S; € S can be transformed to be a binary

vector b; = (1,22, -+ ,xq) by setting
1 e €
X =
: 0 €l §é SZ‘
forl =1,2,--- ,d. In this case, the Jaccard similarity over set

records can be transformed to be that over binary vectors. That
is, J(S;,5;) = J(b;,b;), where b, and b; are respectively
the binary vectors representation of S; and S;. This is also the
key point of Jaccard similarity computation in our scheme, i.e.,
transform set records to binary vectors, and conduct similarity
computation over the transformed binary vectors.

In this paper, we consider the set similarity range search as
the similarity criterion and employ Jaccard similarity as the
similarity metric. In this case, the set similarity range search
can be formally defined in Definition 2 and an example is
present in Example 1.

Definition 2 (Set similarity range search [8]): Given a
query set (Q and a similarity threshold 6, the set similarity
range search is to identify the sets from S such that whose
similarity to @ is equal to or greater than 4, i.e., the query
result will be {S; € S|J(S;,Q) > ¢}.

TABLE II: A collection of sets

D [ Set

S1 {e1,e2,€e3,¢e4,¢6,e7}
Sa {e1,e3,e5,¢6}
S3 {e1,e2,€e4,¢5,¢6,e7}
Sy {e1,e3,€e4,e5}
Ss {e1,e2,e3,¢e5,e7}

Example 1: Table 1I presents a collection of sets & =
{Sl, Ss, 53,84, 55} If the query setis Q = {61, €2, €4, €g, 67}
and the similarity threshold is § = 0.8, the query result will
be {51, 53}, because only sets .S; and S3 satisfy J(S1,Q) =

2=0.833>6and J(53,Q) = 3 =0.833 > 4.

B. ASPE Technique

The ASPE technique (described in [21]) was proposed for
the secure kNN query computation over encrypted database,
i.e., query the k nearest vectors in the database with a given
query vector. The main idea of ASPE technique is to encrypt
the data vectors in the database and generate the query token
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TABLE I: Summary of Notations

Symbol | Description
& ={e1,e2," - ,eq} The collection of all elements
S={51,52,---,5n} The collection of all sets, S; C &
QRQCE The query set
b, = (z1,22, - ,2Zq) The binary vector representation of S;

J(’)

The Jaccard similarity

M The secret key, which is an invertible matrix

M; and M> The authorized keys satisfying (M;l)TMg =M HT
CTx The ciphertext of x
q = (v1,v2, - ,vq) and § The query vector and similarity threshold
TKq The query token of q
TKg,5 The query token of (q, d)
x4, € {0,1}% A d;-dimensional binary vector
Xdy = {x}%2 A d>-dimensional vector and each element is either O or 1

X = (xd17xd2)’ where d1 +ds = d

A d-dimensional vector with prefix x4,

X = {i‘i S {07 1}d7§d1 = xdl}

The collection of vectors sharing the same prefix with x

W= {X = (Xdl,Xd2)‘Xd1 S {07 1}dlzxd2 = {*}dQ}

The class of plaintexts

The predicate function, f5 4 = 1if J(x,q) > J. Otherwise, f54 =0

s.q
F ={fs.qla € {0,139\ 0%, 0 <5 <1}

The class of the predicates functions

(K1,Ka, -+, K¢) The key values of a B+ tree node
(P1,Pa2, -+ ,Piy1) The children pointers of a B+ tree node
p1 and p2 Two polynomial numbers

for the query vector in different ways. Then, the order of the
scalar products between the query vector and the vectors in the
database can be preserved. In other words, for any two vectors
x; and X5 in the database, if x; o q > x5 o q, their encrypted
data will also satisfy that CTx, o TKq > CTx, o TKq, where
CTy,, CTx, and TK, are respectively the ciphertexts of
X1, X2, and the query token of . Specifically, the ASPE
technique ITaspg = (AspeSetup, AspeEnc, AspeTokenGen,
AspeComparsion) can be defined as follows.

o AspeSetup(d): Suppose that all vectors in the database
are d dimensional. Then, the setup algorithm outputs an
invertible matrix M € R%*? ag the secret key, where R
denotes the real domain.

o AspeEnc(M, x): Given the secret key M, a d-dimensional
vector x in the database can be encrypted as CTyx = xM.

o AspeTokenGen(M, q): Given the secret key M and a
d-dimensional query vector q, a query token can be
generated as TKq = rq(M~!)7, where r € R is a
random positive real number.

o AspeComparsion(CTy,, CTx,, TKq): Given two cipher-
texts CTy, = x;M, CTx, = x2M, and a query token
TKq = rq(M~1)T, checking whether x; o q is equal
to or greater than x, o q is equivalent to check whether
CTx, o TKq is equal to or greater than CTy, o TK,.
This is because that

CTx, 0o TKq > CTy, 0 TKq
= CTy, TK] > CTy, TK]
= x;MrM~1q? > xoMrM~1qT
= rx; MM 1q? > rxoMM~1q”

= rxqu > erqT
Due to » > 0, so we have

x1q" > x2q” = x10q>%x20q

C. The Overview of SPE-Sim Scheme

Predicate encryption is a powerful encryption paradigm that
allows for fine-grained access control over the encrypted data
[22]. The owner of the secret key can release partial keys,
called tokens, which can only decrypt a specific subset of
encrypted data. In the literature, a predicate encryption scheme
was designed in the public-key setting [23]. However, Shen et
al. [22] pointed out that the predicate encryption in the public-
setting is likely to violate the predicate privacy. If a predicate
is encrypted by a public key, the adversary can encrypt any
selected plaintexts to evaluate whether the plaintext satisfies
the encrypted predicate or not, which possibly leaks the
predicate information. Thus, in order to protect the predicate
privacy, the predicate encryption should be inherently designed
in the symmetric-key setting.

In this paper, we will design a symmetric-key predicate
encryption scheme (SPE-Sim) supporting similarity search
over binary vectors. In the SPE-Sim, each data record
(21,29, - ,xq) is a d-dimensional binary vector. A naive
solution to design the SPE-Sim is to encrypt each binary
vector. Then, the similarity search can be processed as (i)
generate a query token; (ii) with the query token, traverse all
vectors in the database to find out those vectors satisfying
the query criterion. However, the computational complexity
of query processing in this case will be linear to the database
size. In order to improve the query efficiency, we consider
to encrypt a collection of vectors to be one ciphertext. When
performing the similarity search, it only requires one query
processing operation to determine whether there exists one
vector in the collection that satisfies the query condition. If
not, the collection of vectors can be pruned. Otherwise, we
can continue to process corresponding subcollections.

Specifically, we aggregate the binary vectors sharing the
same prefix into one vector. For example, the collection
of vectors {(0, 1,0,0), (0,1,0,1),(0,1,1,0),(0,1,1,1)} can
be aggregated to be one vector x = (0, 1, %, %), where “*”
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denotes that the third and fourth element in x is either O or 1.
Suppose that each aggregated vector is a d-dimensional vector
and in the form of x = (xg4,,Xq4,), Where di + dy = d. At
the same time, x4, € {0,1}% is a d;-dimensional binary
vector. x4, = {#,---,x} is a dp-dimensional vector. For
d
2
simplicity, we denote x4, by {*}92, where the symbol “*”
denotes that each element in x4, can be either O or 1. That
is, x is associated with a collection of d-dimensional binary
vectors sharing the same prefix x4,, which can be denoted by
X = {§|3\i € {Oa 1}d7§d1 = Xdl}'

Let W = {X = (Xd1axd2)|xd1 € {071}d17Xd2 = {*}dz}
denote the class of plaintexts. At the~ same time, each x is asso-
ciated with a collection of vectors X = {X|x € {0,1}%,%4, =
X4, }. Let F = {fsqlq € {0,1}¢\ 04, 0 < § < 1} denote
the class of the predicates functions. The function f5q(x) is
equal to 1 iff there exists at least one vector X € X such that
J(X,q) > 4, i.e., the upper bound of the similarity between
q and the vectors in X’ is equal to or greater than J, where
J(X,4) = Frqiseg (X =%XoX[q| =qoq).

Then, our SPE-Sim Ilspg_sim = (SpeSetup, SpeEnc,
SpeTokenGen, SpeQuery) can be defined as follows.

o SpeSetup(d): Given a parameter d, the setup algorithm

outputs a secret key sk.

o SpeEnc(sk,x): Given the secret key sk, a d-dimensional
vector x € W can be encrypted as a ciphertext CTy.

o SpeTokenGen(sk, fs.q): Given the secret key sk and
a description of a predicate fs5q, the token generation
algorithm outputs a token TKs 4.

o SpeQuery(TK;,q,CTx): Let TKsq and CTx respec-
tively denote the token of the predicate f5, and the
ciphertext of x. The query algorithm outputs O or 1 to
indicate the value of fs5 4 evaluated on the plaintext x.

Correctness: Generally speaking, the SPE-Sim is correct iff
SpeQuery(TK; o, CTx) can return the correct result. That is,

o If f54(x) = 1, ie., there exists at least one vector
X € X such that J(X,q) > 4, the query algorithm
SpeQuery(TKs , CTx) returns 1.

o If f54(x) = 0, ie., the similarity between any vector
X € X and q is less than 8, i.c., J(X,q) < 4, the query
algorithm SpeQuery(TK; o, CTx) returns 0.

Security: Same as [24], the semantic security of our SPE-
Sim is proved in the real/ideal setting, which can subsume
the traditional security definitions in the indistinguishability
setting. Before formally defining the security, we first define
the trivial leakage in the SPE-Sim. For a given predicate
f5,q and a given message x, the leakage of SPE-Sim is the
query matching result £ = SpeQuery(TKs o, CTx). With the
leakage L, the real and ideal experiments of SPE-Sim can be
defined as follows.

Real experiment: In the real experiment, it involves a chal-
lenger and a PPT (probabilistic polynomial-time) adversary A4,
who will interact as follows.

e Setup: In the setup phase, the adversary A chooses a
plaintext vector x € ¥V and sends it to the challenger.
Then, the challenger runs the algorithm SpeSetup(d) to
generate a secret key sk.

e Query phase 1: The adversary A adaptively chooses the
predicate f5; , for 1 < j < p1, where p; is a polynomial
number. Then, the challenger takes sk and fs; o, as input
to run the token generation algorithm and returns the
token TKs, o, to A.

o Challenge phase: The challenger takes sk and x as inputs
to run the encryption algorithm and returns CTy, =
SpeEnc(sk, x) to A.

o Query phase 2: The adversary A runs a protocol same as
the query phase 1 and receives TKj; o, for p1 < j < pa,
where ps is a polynomial number.

In the real experiment, the view of a PPT distinguisher D
includes CTy and TKjy, g, for 1 < j < po,i.e., View 4 Real =
{CTy TKs, .1 < j < pa}.

Ideal experiment: In the ideal experiment, it involves a
simulator with leakage £ and a PPT adversary A, who will
interact as follows.

o Setup: In the setup phase, the adversary A chooses a
plaintext vector x € W and sends it to the simulator. On
receiving x, the simulator randomly chooses a ciphertext
CTy.

o Query phase I: The adversary A adaptively chooses the
predicate f5; ¢, for 1 < j < p;. Then, the simulator takes
the leakage £ = SpeQuery(TKs, q,, CTx) as inputs and
outputs the token TKj, o, to the adversary A.

e Challenge phase: The simulator returns CTy to the
adversary A.

o Query phase 2: The adversary A runs a protocol same as
the query phase 1 and receives TKj;, o, for p1 < j < pa.

In the ideal experiment, the view of a PPT distinguisher D
is also View g 1deal,c = {CTx, TKs; o;[1 < j < pa}.

Definition 3 (Security of SPE-Sim): The SPE-Sim is adap-
tively secure with respect to the leakage L iff for all PPT
adversaries A issuing polynomial numbers of predicate en-
cryptions (i.e., ps2), there exists a PPT simulator such that the
advantage of a PPT distinguisher D can distinguish the real
and ideal experiments is negligible, i.e., Pr[D(View 4 Real) =
1] — Pr[D(View 4 1deal,c) = 1] is negligible.

IV. OUR PROPOSED SCHEME

In this section, we present our proposed SetSim scheme.
Before develing into the details of our proposed scheme,
we first introduce our detailed SPE-Sim construction, which
serves as the building block of our proposed scheme.

A. Detailed SPE-Sim Construction

Let W = {X = (xd1vxd2)|xd1 € {Oal}dlvxdz = {*}dz}
and F = {fsq4la € {0,134\ 0%, 0 < § < 1} respectively
denote the class of plaintexts and the class of predicate
functions. Suppose that x = (x4,,X4,) € W is a vector in
the database and fsq € F is a predicate function, where
q € {0,1}4\ 0% and 0 < 6 < 1. Then, we have the following
observation.

Observation I: Given x and the collection of vectors shar-
ing the same prefix with x, i.e., X = {X|x € {0,1}4,%4, =
X4, }, the upper bound of the similarities between q and the
vectors in X is J(Xup, q), Where X,p = (X4, , dd, )-
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Based on the observation, we present the detailed SPE-Sim
construction Ispe_sim = (SpeSetup, SpeEnc, SpeTokenGen,
SpeQuery) as follows.

o SpeSetup(d): Given a parameter d, the setup algorithm
outputs a secret key sk = M, where M € R(3d+4)x(3d+4)
is a random invertible matrix in the real domain.

o SpeEnc(sk = M, x): Given the secret key sk = M, the
plaintext x € WV can be encrypted as follows.

Step 1: Extend d-dimensional x to be a 2d-dimensional
binary vector x’. Suppose that x is in the for-

m of (x4,,%Xd,) = (x1,%2, -+ ,Td,,%,---,%). Then,
x' = (@), ah, W g, X0 Thg g, Th,) can be
constructed by setting
, €T; 1 S ) S d1
Xoi—1 = . 3)
0 di <i<d
, 0 1<i<d
Xo; = . “4)
1 dy <i<d

Step 2: According to x, construct a d-dimensional vector
x#, where

x; = . &)
1 di<i<d

Step 3: Further extend x’ to be a (3d + 4)-dimensional
vector x”" = (x/,x%*,1,|xq,|,71,71), Where 7 is a
random real number.
Step 4: Encrypt x" as CTx = AspeEnc(M, x") = x”"M.
o SpeTokenGen(sk, fs.q): Given the secret key sk and the
predicate (J,q), a corresponding predicate token TK;
can be generated as the following steps.
Step 1: Extend d-dimensional predicate q to be
a 2d-dimensional vector q'. Suppose that q =
(v1,v2, -+ ,vq), then it will be extended to be q' =
(6}, 0.+ vy, vhg) by setting

6
vh; = V7 1<i<d ©

i ST

{Ulgj,_lzw 1<i<d

Step 2: Extend ' to be a (3d + 4)-dimensional vector
q’ = ((1+96)d’,—dq,—d|q|, =6, rs, —12), where ry is
random real number.

Step 3: Encrypt q” as a predicate token TK;q =
AspeTokenGen(M, q”) = rq”’(M~1)T, where r is a
random positive real number.

o SpeQuery(TKj o, CTx): The query algorithm takes the
query token TKs 4 and the ciphertext CTx as inputs.
Then, it computes the value of CTx o TKs . If CTx o
TKs,q > 0, it outputs 1 else it outputs 0.

Correctness: The correctness of our SPE-Sim can be veri-
fied as follows. First, we have the following fact,

CTx 0 TKs,g
= CTxTKj 4
_ TX//MM—lq//T
1 1"
=TrX O q
= r(x'p(#7 1, |%a,|,71,71) o (1 + 8)d’, —dq, —8|q|, =8, 72, —72)
=r((1+0)x oq —6x" oq—dlq| — d]xa, )

If CTx 0 TKs5 4 > 0, we have
r((146)x oq' — 0x¥ oq —d|q| — d|xq4,|) >0
Due to r is a positive real number, we have
((1+ 6% 0 q — 6 0 q — dla| — 84, |) > 0

x' oq <
[Xa, |+ |q| +x#oq—x'0oq ~

(7

On the one hand, we have
x' oq
dy d
(T2i—1 - v2—1 + @25 - v24) + Z (2i—1 - v2—1 + T25 - V2;)
i=dy+1

I
QT
&l
-

d
(x;-v; +0-02) + Z (0-v; +1-v%)
i=dy+1

7Ud)oq

I\

N
Il
-

I
—

Ty Ty s Vg +15° "
=(%q,,qdy) ° 4
=Xup ©0q

On the other hand, we have

xa,| +x# 0q=[xq,|+ (0,--,0,1,--+ ,1)oq
dy do

=|xd,| + [Qdz | = [Xup|
Thus, we have
x' oq
|Xa,| + |a| +x# oq—x'oq

Xup 0 q -
=— — = J ups 9
Bl Tl —Soupoq e ©)

®)

As a result, by combining Eq. (7) and Eq. (9), we can
obtain that J(Xup,q) > 0. As shown in the observation 1,
J(Xup, q) is the upper bound among the similarities between
q and the vectors in X = {X|X € {0,1}% X4, = x4, }. Then,
if J(Xup,q) > 0, there exists at least one vector X € X
such that J(X,q) > ¢. In this case, f5q(x) = 1. Otherwise,
f5.a(x) = 0.

Note that when x € {0,1}% is a binary vector, the query
algorithm SpeQuery(TKs , CTx) is equivalent to check
whether the vector x satisfies that J(x,q) > J or not, where
q is the query vector.
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B. The Description of Our Proposed Scheme

In this subsection, we present our SetSim scheme. Its main
idea is to first transform the set records to integers and use
these integers as key values to build a B+ tree. Then, we deploy
our SPE-Sim construction to encrypt and search the B+ tree
in a privacy-preserving way. In specific, our SetSim scheme
is comprised of three phases, i.e., System Initialization, Local
Data Outsourcing, and Set Similarity Search.

1) System Initialization: The data owner is responsible for
bootstrapping the whole system. Given the parameter d, he/she
first generates an invertible matrix M € R(G4+4)x(3d+4) 4pq
computes the inverse matrix of M, i.e., M-, Both M and
M~! are regarded as the secret key. Meanwhile, for each
user U,;, the data owner authorizes him/her by respective-
ly distributing random matrices M; € RGdH4)x(3d+4) 3pd
My € RBA+4)xBd+4) 1 7, and the cloud server, where M,
and M satisfy that (M;")TM, = (M~1)T. Note that different
query users have different authorized matrices.

2) Local Data Outsourcing: Suppose that the data owner
has a collection of sets S = {S1,S52,---,S5,} and each
set S; € S is a subset of &, ie., S; C &, where £ =
{e1,ea, -+ ,eq} is the collection of all elements. Then, he/she
can outsource them to the cloud server as follows.

Step 1: Represent each S; € S to be a d-dimensional binary
vector b; = (1,22, - ,xq) by setting each z; as

e €.5;

_ 1
0 er & S

for 1 <[ < d. After this step, the data owner has a collection
of binary vectors, i.e., B= {b;} ;.

Step 2: For each b; = (x1,z2, -+ ,24) in B, the data
owner transforms it to an integer val; = 27:1 xp % 2471
After this step, the data owner have a collection of integers
corresponding to B, i.e., {val;}7" ;.

Step 3: Build an N-ary B+ tree for the values {val;} ,
as the tree building algorithm in [25]. In the B+ tree, there
are three kinds of nodes, i.e., root node, internal node and
leaf node. For an N-ary B+ tree, the number of key values
in the internal nodes and leaf nodes range from [%1 —1to
N — 1. For the root node, it can be either internal node or
leaf node, and the number of key values in it range from 1
to NV — 1. Apart from key values, each node also contains
the pointers to its children nodes. Suppose that an internal
node contains ¢ keywords, i.e., { K1, Ko, -+ , Ky}, then it also
contains ¢ 4+ 1 pointers {Py, Pa, -, Py1}. Py points to the
child node whose key values are less than K. Meanwhile, P;
points to a child node whose key values belong to [K;_1, K;)
for 2 < 5 < t. For P;41, it points to the child node whose
key values are equal to or greater than K.

Example 2: Suppose that the collection of key values are
{4,9,16,25,1,20,13,15,10,11,12}. A 4-ary B+ tree can be
built as shown in Fig. 2.

Step 4: Extend the B+ tree by extending its internal nodes.
Each internal node with ¢ values { K1, Ko, - -+ , K} will be ex-
tended by adding two additional key values Ky, K;41, where
Ky and K, are respectively the leftmost value and rightmost
value of the current node’s children nodes. After extension, the

(10)

1] |
\

S

9 [11] 16 |

L1 AR

LN [N

1]a] 9 [10] 11]12] 13]15] 162025
\

Fig. 2: An example of B+ tree for the collection of key values
{4,9,16,25,1,20,13,15,10, 11,12}

node contains ¢t + 2 key values {Ky, K1, -, Kt, K¢41}. For
example, the root node with key values {13} in Fig. 2 can
be extended to ba a node with key values {1,13,25}. In this
case, the B+ tree in Fig. 2 can be extended to be a B+ tree as
shown in Fig. 3.

Fig. 3: An example of the extended B+ tree for the collection
of key values {4,9,16,25,1,20,13,15,10,11,12}

Step 5: Encrypt the internal nodes in the B+ tree. Sup-
pose that an internal node mnode has t + 2 key values
{Ko, K1, -+ ,K;, Kyy1} and t + 1 pointers {Py,- -+, Piy1},
denoted by node = {{K(], Kl, s ,Kt,KtJrl}, {Pl, ey,

Pt}
- First, represent {Ko, K1, -+, K¢, Kiy1} to be ¢ + 1
ranges, i.e., {[Ko, K1), -, [Ki—1, K;), [K¢, K1)} In

order to facilitate description, the last range [K;, K1)
can be transformed to be [K;, K¢11) by setting Ky =
K11 + 1. Then, the internal node can be represented to
be node = {[K;_1, K;), P, 5111

- Second, for the j-th range [K;_1, k), represent it to
be a collection of d-dimensional binary vectors, i.e.,
{BinVec(val)val € [K;_1,K;)}, where BinVec(val)
is a function to transform an integer value to be a d-
dimensional vector.

- Third, when some vectors in {BinVec(val)|val €
[K;_1,K;)} share the same prefix, they can be aggregat-
ed to be one vector with “*” as suffix. Then, all binary
vectors can be aggregated to be several vectors, i.e., X; =
{x = (X4,,%Xa,)|%xq, € {0,1}% x4, = {*¥}%}, where
x4, and x4, respectively denote the first d; elements and
the last dy elements of x, and d; + d2 = d.

Example 3: As shown in Fig. 3, the root node
has key wvalues {1,13,25} and the second range

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:58:47 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3004442, IEEE

Transactions on Dependable and Secure Computing

is [13,26). Meanwhile, each wvalue in [13,26)

can be represented to be a binary vector, e.g.,

20 can be represented to be (1,0,1,0,0). Then,

these binary vectors can be aggregated to be

a set of binary vectors with suffix, ie., Xy =

{(0,1,1,0,1),(0,1,1,1,%), (1,0, *,*,%),(1,1,0,0, %)},

where (0,1, 1,0, 1) represents 13, (0,1, 1, 1, %) represents

{14, 15}, (1, 0, *, *, *) represents the values from 16 to

23, and (1, 1, 0, 0, *) represents {24, 25}.

In this case, the internal node can be represented to be

node = {X;, P;}tH}

- Furthermore, for each x € &, it can be encrypted as
CTx = SpeEnc(M, x) by the encryption algorithm in
Subsection IV-A. In this case, X; can be encrypted to
be E(X;) = {CTx = SpeEnc(M,x)|x € A}}. Then,
the internal node node will be encrypted as E(node) =
{E(X)), P} LN
Step 6: Encrypt the leaf nodes in the B+ tree. Suppose that a

leaf node node contains ¢ values { K }3»:1, it can be encrypted

as follows.

- First, represent {K;},_, to be ¢ d-dimensional vectors,
ie., {BinVec(K;)|j = 1,2,--- ,t}, where BinVec(K;)
is a function to transform an integer value to be a d-
dimensional vector.

- Second, for each BinVec(Kj), it can be encrypted as
CT; = SpeEnc(M, BinVec(kK)) by the encryption al-
gorithm in Subsection IV-A for j =1,2,--- |t.

- Then, the leaf node node is encrypted as E(node) =
{CT,}i.

Step 7: Finally, the data owner encrypts the B+ tree by
replacing each internal node and leaf node with their cor-
responding ciphertexts. Then, in order to preserve the order
privacy of the values in the B+ tree, the data owner permutates
the values in internal nodes and leaf nodes. Finally, he/she
outsources the encrypted B+ tree 7' to the cloud server.

3) Set Similarity Search: Given a query set () and simi-
larity threshold 4, the authorized user U can perform the set
similarity search as the following steps.

Step 1: U first represents the query set ) to be a
d-dimensional binary vector as the Eq. (10), ie., q =
(v1,v2,"+ ,vq).

Step 2: U uses its authorized key M; to encrypt the vector
q and ¢ as the token generation algorithm in Subsection IV-A,
ie., TKsq = SpeTokenGen(My, fs5.4) = rq” (M H)7.

Step 3: U sends the query request together with TKs 4 to
the cloud server.

Step 4: On receiving the query request and TK; g, the
cloud server first verifies whether U is authorized or not.
The query user authentication can be achieved by an existing
authentication protocol, e.g., password authentication protocol
[26]. If not, it will reject the current request. Otherwise, it will
update the query token TK; 4 as

TKj o = TKsq x Mo
_ Tq//(Ml_l)T % 1\/[2
_ T’q//(M_l)T

Then, the cloud server searches the encrypted B+ tree T
to obtain the targeted sets as the range search algorithm in
Algorithm 1. The main idea is to first obtain the candidate
leaf nodes that may contain the query result by iteratively
traversing 7" with a depth-first search algorithm, as shown in
Algorithm 2. Then, check the candidate leaf nodes one by
one to get the finial query result as shown in lines 3-7 in
Algorithm 1.

Algorithm 1 RangeSearch(T, TK37q)

Input: The encrypted B+ tree 1" and the updated query token TKgy a
Output: R = {CT;|SpeQuery(TKj ,,CT;) =1}
1. R=0
2: LeafSet = IterSearch(TKgﬂq,T.root)
3: for each LNode in LeafSet do

*LNode is encrypted as {CT;};_,

for j =1,2,--- ,t do

if SpeQuery(TKg,q, CT;) ==1 then
R =RU{CTy}

return R

s

Algorithm 2 JterSearch(TKj o, node)

Input: The query token TKY  and the node needed to be searched node
Output: The set of leaf nodes containing the possible query result
1: LeafSet =0
2: if node is a leaf node then
LeafSet = LeafSet U node
for j=1,2,---,t+1do
*The node node is encrypted as E(node) = {E(X}), P; };ill
for each CTx € E(&X}) do
if SpeQuery(TKg, ,CTx) ==1 then
IterSearch(TKj , node.P;)
break

hed

SO X IR

—

return LeafSet

- Iteratively traversing: For each node node, if it is a leaf
node, put it into the set of candidate leaf nodes, i.e.,
LeafSet = LeafSet Unode. Otherwise, if it is an internal
node E(node) = {E(X;), P; }24;11, the cloud server checks
each E(X;) for j = 1,2,---,t + 1. If there exists a
CTx € E(X;) such that SpeQuery(TKj ,, CTy) = 1,
based on the SPE-Sim construction, there may exist a
set S; € S such that the integer corresponding to its
binary representation falls in the range [K;_1, K;) and
J(S;,Q) > 4. In this case, the cloud server needs to
search the child node pointed by P;. Otherwise, the child
node pointed by P; can be pruned.

- Checking: For each leaf node LNode in candidate set
LeafSet, it has been encrypted to be {CT;}_,. For each
CT}, the cloud server computes SpeQuery(Tngq, CT)).
If SpeQuery(TKj,,CT;) = 1, the cloud server adds
CT; to the query result R.

Finally, the cloud server obtains the query result R =
{CT;|SpeQuery(TKj ,, CT;) = 1}.

Step 5: The cloud server uses U’s authorized key My to
partly decrypt the query result. That is, for each CT; € R,
the cloud server computes CT,;MZ. Then, the cloud server
returns R’ = {CT; M7 |SpeQuery(TKj ,, CT;) =1} to U.

Step 6: When the user U receives the query result, he/she
uses the authorized key M; to recover the vector encrypted in
CT;. That is, X" = CTjMQTMfl. From x”, U, can recover
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the d-dimensional vector x by setting z; = x4, , for i =
1,2,--- ,d. Finally, the user transforms each vector x to be
a set §; € S. In specific, S; contains e; if x; is 1 for i =
1,2,---,d.
Correctness: The query result is correct because
CTMZM; = CT5 (M) Ma))"
= CT,; (M~ H)1)"
— X”MM71

"
=X

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
SetSim scheme. Since our SPE-Sim construction is its critical
building block, we first prove the security of our SPE-Sim
construction.

A. Security Analysis of Our SPE-Sim Construction

Theorem 1: Our SPE-Sim construction is adaptively
simulation-secure with leakage £ = SpeQuery(TK; o, CTx),
where TKj; 4 is the query token of predicate fq s and CTy
is the ciphertext of x.

Proof: We first construct a simulator for the ideal exper-
iment as follows.

e Setup: In the setup phase, the adversary A chooses a
plaintext vector x € W and sends it to the simulator. On
receiving x, the simulator randomly chooses a (3d + 4)-
dimensional vector as CTy.

e Query phase 1: The adversary A adaptively choos-
es the predicate f5, o, for 1 < j < p;. For
each predicate, the simulator takes the leakage L =
SpeQuery(TKj; q;, CTx) as inputs and outputs the token
TKs, q; as follows.

- If SpeQuery(TKj,q;, CTx) == 1, the simulator ran-
domly selects a vector (3d + 4)-dimensional vector
TKs, q; such that TK;, ¢, 0o CTx > 0.

- If SpeQuery(TKj,;, CTx) == 0, the simulator ran-
domly selects a vector (3d + 4)-dimensional vector
TKs, q; such that TK;, ¢, 0 CTx <O0.

Then, the simulator returns TKs, 4, to the adversary A.

e Challenge phase: The simulator provides CTy to the
adversary A.

o Query phase 2: The adversary A runs a protocol same as
the query phase 1 and receives TKj;, q; for p1 < j < pa.

In the real experiment, the view of a PPT distinguisher

D is CTx and TKs, o,. Before x is encrypted to be CTx,
x needs to be transformed to be a (3d + 4)-dimensional
vector x” = (x/,x*,1,|x4,|,71,71) and 71 is a random
real number. The random number r; makes the ciphertext
CTx be a random vector. Similarly, the query vector q;
is also extended to contain two random numbers ro and
r, so the query token TKs, 4, looks like a random vector.
Meanwhile, when a same query vector is encrypted twice, the
involvement of random numbers enables that the generated
two ciphertexts look like two different random vectors. In
the ideal experiment, CTx and TKj, q; in the distinguisher’s

view are also random numbers. Thus, CTyx and TKs;, q;
for 1 < j7 < py in both the real experiment and ideal
experiment involve random number, the advantage of a PPT
distinguisher D in the real and ideal experiments is negligible,
i.e., Pl“[D(VieWA’Real) = 1] — Pr['D(VieW.A,Ideal}L) = 1] is
negligible. [ ]

B. Security Analysis of Our SetSim Scheme

In this subsection, we analyze the security of our SetSim
scheme. In particular, we focus on the privacy-preserving
properties, i.e., (i) the encrypted sets stored in the cloud server
are privacy-preserving; (ii) the query predicate is privacy-
preserving; (iii) the query result is privacy-preserving.

o The encrypted sets stored in the cloud server is privacy-
preserving: As described in Section IV, the collection of
sets is encrypted to be a B+ tree and outsourced to
the cloud server, which mainly includes two kinds of n-
odes, i.e., internal nodes and leaf nodes. The internal node
node = {[K,_1, K;), P;}}£} will be encrypted as E(node) =
{E(X)), P; 34;11, where E(X}) is a set of ciphertexts encrypted
by the encryption algorithm of our SPE-Sim construction.
If the adversary intends to obtain the information about the
sets, it may first attempt to obtain some information about
the range [K;_q,K;) from the ciphertexts in E(X}). Since
each ciphertext CTx € E(X}) is encrypted by the encryption
algorithm of our SPE-Sim construction, the adaptive security
of our SPE-Sim construction can guarantee that the cloud
server cannot obtain any plaintexts information about the
range [K;_1,K;) from the ciphertexts. For each leaf node
node = {K1,--- , K}, it is encrypted to be {CT;}’_,. Each
CT; is encrypted by the encryption algorithm of our SPE-
Sim construction. Similar to the internal nodes, the adaptive
security of SPE-Sim construction can guarantee that the cloud
server has no idea on the plaintext of K; from CT; for
7 = 1,2,---,t. Thus, from each internal node and leaf
node, the cloud server cannot obtain any information about
the key values from corresponding ciphertexts. For the whole
encrypted B+ tree, since the key values in each internal node
and leaf node have been permutated before outsourcing to
the cloud, the order information of the values among sibling
nodes in the B+ tree can also be preserved. Although the order
information between the parent nodes and their child nodes is
leaked, the permutation technique can still guarantee that it
is difficult for the cloud server to learn about the key values
information of internal nodes and leaf nodes. This is because
once the key values in the internal nodes and leaf nodes are
permutated, the possible range of the key values in the internal
nodes and leaf nodes will be the whole domain. In this case,
the order information between the parent nodes and their child
nodes cannot contribute to deducing the key values of B+
tree. Therefore, the encrypted sets stored in the cloud server
is privacy-preserving.

e The query predicate is privacy-preserving: During the
process of the set similarity search, our scheme should keep
the query predicate secret from the unauthorized entities,
including the cloud server and unauthorized users. For the
cloud server, since the query predicate fs5 4 has been encrypted
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to be a query token TK; o before sending to the cloud server,
the security of our SPE-Sim construction guarantees that the
cloud server has no idea on the plaintext of the query predicate.

After receiving the query token, the cloud server is likely
to deduce the query predicate from the process of searching
B+ tree, which contains two steps, i.e., iteratively traverse
to obtain the candidate leaf nodes and check the candidate
leaf nodes. First, during the process of traversing, for each
internal node E(node) = {E(X;), P;}!1], the cloud server
will compute the inner product of the query token TKqu with
each CTx € E(X;). The inner product only leaks whether
there may be sets whose integer representation falls into the
corresponding plaintext range. However, since the key values
range in each internal node is permutated, the cloud server
has no idea on the plaintext range of this internal node. In this
case, it also has no idea on the plaintext of the query predicate.
Second, during the process of checking, the cloud server needs
to check whether each key value in a leaf node is the query
result. In this process, the only leakage is the inner product
between the query token TK:«;JJl and each ciphertext CT; in
the leaf node. Similar to the internal node, the permutation
of the B+ tree prevents the cloud server from deducing the
plaintext of the query predicate, i.e., (4, q). Thus, during the
query process, the cloud server has no idea on the plaintext
of the predicate.

For the unauthorized users, each of them is authorized by a
random invertible matrix M. At the same time, different users
are authorized by different random matrices, and each user
encrypts his/her query request using his/her authorized key. In
this case, the information that other unauthorized users can use
to deduce the query predicate is no more than the information
that the cloud server can use. Thus, other unauthorized users
also have no idea on the plaintext of the query predicate.
Therefore, both the cloud server and the unauthorized users
have no idea on the query predicate.

o The query result is privacy-preserving: The query result
R’ = {CT;M7|SpeQuery(TKj,,CT;) = 1} has been
encrypted. For the cloud server, it can also see the result
R = {CT,|SpeQuery(TKj ,,CT;) = 1}. However, since it
has no idea on the encryption matrix M, it also has no idea
on the plaintext of query result. For other authorized users,
they may eavesdrop the encrypted query result R’. However,
since they have no idea on the the authorized key M; held by
the query user, they cannot recover the plaintext of the query
result. Therefore, the query result is kept secret from both the
cloud server and other authorized users.

VI. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the performance
of our proposed scheme with respect to the computational cost
of local data outsourcing and set similarity search. We imple-
mented our scheme in Java and conducted experiments on a
machine with an Intel(R) Core(TM) i7-3770 CPU @3.40GHz,
16GB RAM and Windows 10 operating system. In our exper-
iments, we evaluate our scheme on a real joke rating dataset
Jester [27] from 24,983 users who have rated 36 or more jokes
(there are 100 jokes in total). Each rating is a real number

ranging from -10.00 to 10.00. We transform the Jester dataset
to be a collection of sets and each set is comprised of the jokes
that a specific user is rated and the rating value is equal to or
larger than 7. That is, each set contains a set of jokes that a
specific user likes. At the same time, we remove the duplicate
sets. After the data processing, the dataset contains 11,987 sets
and 100 elements, i.e., |S| = 11,987 and |£| = 100.

Since most of the existing similarity query schemes are
either weak in security or cannot support exact set similarity
search, in our experiment, we compare our proposed scheme
with a secure kNN query protocol, i.e., the basic protocol in
[11]. The basic protocol was initially proposed to achieve the
Euclidean distance based kNN search, and it can be deploy to
achieve the set similarity range search by representing each set
record to be a binary vector as described in Subsection IV-B.

A. Local Data Outsourcing

In our scheme, the data owner is responsible for encrypting
and outsourcing its local data to the cloud as described
in Subsection IV-B. The computational cost of local data
outsourcing involves (i) representing the collection of sets to
be a B+ tree; (ii) encrypting each key values in the B+ tree
with the encryption of our SPE-Sim construction, which is
linear to the total number of sets, i.e., O(|S|). For the basic
protocol in [11], the local data outsourcing phase is to encrypt
each binary vector by encrypting each value in the vector with
Paillier encryption algorithm, i.e., a vector (by, b, -+ ,by) is
encrypted to be (PEnc(b1), PEnc(by),- - ,PEnc(by)), where
PEnc(-) is the Paillier encryption algorithm. Thus, outsourcing
|S| set records to the cloud requires |S| x d Paillier encryption
operations. When the Paillier encryption key size is set to
be 1024, each Pailler encryption operation takes about 6 ms.
Fig. 4 plots the computational cost of local data outsourcing
versus the number of sets (i.e., |S|) over the Jester dataset,
where d = |€| = 100. From this figure, we can see that the
computational cost of local data outsourcing in both the basic
protocol [11] and our proposed scheme linearly increases with
|S|, while our proposed scheme is much more efficient. For
example, when |S| = 5000, the computational cost in our
scheme is 2058 ms while that of basic protocol is 3 x 10% ms.
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Fig. 4: The computational cost of local data outsourcing versus
the number of sets |S|, where |£] = 100
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B. Set Similarity Search

1) The computational cost of query token generation: In
the set similarity range search phase, the query user first
generates the query token. In our scheme, the computational
complexity of query token generation is O(d?), where d is the
total number of unique elements in the dataset. In the basic
protocol [11], the query set first transforms a query set to
be a binary query vector in the form of (vq,ve, - ,vq) and
then uses Paillier to encrypt each element of the query vector,
i.e., (PEnc(v1), PEnc(vs), -, PEnc(vg)). Thus, generating a
query token in the basic protocol requires d Paillier encryption
operations. Fig. 5 compares the computational cost of query
token generation in our scheme and the basic protocol versus
the parameter d. From this figure, we can see that the compu-
tational cost of query token generation in both our proposed
scheme and the basic protocol increases with d, while our
proposed scheme is much more efficient. For example, when
d = 100, generating a query token in our proposed scheme
just takes 0.01235 ms while that in basic protocol is 60000
ms. Thus, the query token generation in our proposed scheme
is highly efficient and light weight.
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Fig. 5: The computational cost of query token generation
versus d (the number of unique elements in |S|)

2) The computational cost of query processing over the
encrypted data in the cloud: After receiving the query token
from the user, the cloud server searches the encrypted B+ tree
stored in the cloud and returns the query result to the query
user. The computational cost of the set similarity search is
closely related to two parameters, i.e., the height of the B+
tree and the similarity threshold §. In our experiment, the B+
tree is set to be 4-ary tree, so the height of the B+ tree will
be related to |S], i.e., logs |S|. Fig. 6 plots the computational
cost of set similarity search over the encrypted Jester dataset
in the cloud varying with |S| and §. From this figure, we
can see that the computational cost of set similarity search
increases as |S| and ¢ increase. This is because the increase
of |S| will result in the increase of the height of the B+
tree, which is positively correlated to the computational cost
of set similarity search. For instance, when § = 0.6, the
computational cost of set similarity search over an encrypted
B+ tree with |S| = 1000 is only 7.52 ms, while that over an
encrypted B+ tree with |S| = 10000 is about 54.04 ms. For the
0, when it increases, the number of children nodes that can be

pruned in the encrypted B+ tree probably increase. Thus, the
computational cost of set similarity search decreases as the §
increases. For example, when |S| = 5000, the computational
cost of set similarity for § = 0.5 is about 31.57 ms, while that
for 6 = 0.9 is only 5.48 ms.
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Time of range query search in the cloud (ms)
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Fig. 6: The computational cost of set similarity search in the
cloud versus |S| and the similarity threshold ¢

Then, we compare our proposed scheme with the basic
protocol [11] in terms of the query efficiency in the cloud. The
basic protocol is initially proposed for the secure kNN query
by scanning each encrypted data record and the computational
cost of computing the similarity between two encrypted data
is about d decryption operations and d encryption opera-
tions. In specific, given the ciphertexts of vectors a and

q, i.e., E(a) = (PEnc(a1),PEnc(as),---,PEnc(ag)) and
E(q) = (PEnc(v1),PEnc(vs),---,PEnc(vg)), the Jaccard
similarity between a and q is J(a,q) = m. With

the encrypted data E(a) and E(q), a o g can be computed as
H‘j:l PEnc(a; * v;) and |a|] + |q] — a o q can be computed
as H?:l PEnc(a;) + H?:l PEnc(v;) — H?:l PEnc(a; * v;)
as described in [11]. At the same time, the main computa-
tional cost is to compute Hle PEnc(a; * v;), which requires
d encryption operations and d decryption operations. After
computing the similarity between each data with the query
data, the cloud requires k decryption operations to return the
result to the query user. Thus, the total computational cost
of the basic protocol is (d x |S|) encryption operations and
(d x |S] + k) decryption operations. During the process of
query, the computational cost of the basic protocol increases
with the parameter k increases. Thus, the least computational
cost is (d x |S|) encryption operations and (d x |S| + 1)
decryption operations, i.e., k = 1.

At the same time, in our scheme, the computational cost
of similarity query increases as the similarity threshold ¢
decreases. When 6 = 0.5, the computational cost is larger
than that when § = 0.6,0.7,0.8,0.9. In order to validate the
query efficiency of our proposed scheme, we compare the least
computation cost of the basic protocol when & = 1 with that
of our proposed scheme when § = 0.5 versus the number of
data records in the cloud (i.e., |S]), as shown in Fig. 7. From
this figure, we can see that out proposed scheme is far more
efficient than the basic protocol in terms of query processing.
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3) The computational cost of query result recovery at the
query user side: In our proposed scheme, the final step of the
set similarity search is that the query user uses his/her access
key M; to recover the plaintext of the query result. The basic
operation during the process of decryption is a multiplication
operation between a matrix and a vector. At the same time,
the computational cost in this step is closely related to the
number of sets in the query result and also the size of each
set. In our scheme, we evaluated the average computational
cost of recovering one plaintext set from the query result, and
it is about 0.24 ms, which is pretty efficient. For the basic
protocol, the query result recovery is the minus operation over
plaintexts, so it is also efficient.

VII. RELATED WORK

The set similarity search is to search a collection of sets to
find out the similar sets with a given query set, and there are
two types of set similarity search, i.e., (i) top-k set similarity
search, which returns £ sets that are most similar to the current
query set; (ii) set similarity range search with a similarity
threshold 9, which returns the sets whose similarity to the
query set is equal to or greater than §. In the literature, the
set similarity search is widely studied and many proposals
are proposed [8]-[10], [28], [29]. Especially, Zhang et al. [8]
proposed a B+ tree based index to achieve the set similarity,
which is very efficient. In this paper, we use a similar index
structure to represent the set records. However, different from
this work, we focus on the privacy preservation property. Same
as the work in [8], most of existing set similarity search works
focus on the set similarity search over the plaintext domain.

In 2014, Blundo et al. [30] used private set intersection
cardinality protocol to design a secure set similarity compu-
tation protocol and it can be deployed to achieve secure set
similarity search. However, the proposed scheme is a two-
party computation protocol and is not suitable for the data
outsourcing scenario. For other works, most of them focus
on the similarity query over fixed dimensional data point
records. Actually, the set similarity search can be achieved
by similarity query when each set record is transformed to
be a fixed dimensional data point record. As for the similarity
query, Elmehdwi et al. [11] and Rane et al. in [12] respectively

designed a privacy-preserving set similarity search scheme,
both of which are based on the homomorphic encryption
technique and achieve similarity query by scanning each data
record. Although, the proposed schemes can achieve strong
security, but they are computationally inefficient due to the
homomorphic encryption and linear scan. Yiu et al. [13] and
Liu et al. [14] respectively introduced a privacy-preserving set
similarity search over outsourced data. However, the security
of these two schemes are too weak and unacceptable in some
scenarios due to the adoption of the order preserving encryp-
tion technique. In these two schemes, the order information
of the plaintext data will be leaked once the data records are
outsourced to the cloud.

In order to balance the security and efficiency of the
similarity search, the SSE and LSH based similarity search
were proposed in [8], [15]-[17]. The main idea of such
schemes is to first map each data record to a hash value
by the locality-sensitive hash function, regard the hash values
as the “keywords”, and use SSE schemes to build index for
these keywords. Then, the similarity query can be achieved by
the keyword query of the SSE schemes. However, since the
idea of locality-sensitive hashing is to map similar data into a
same LSH value, it can just provide approximate set similarity
search rather than exact one. To achieve exact SSE and LSH
based similarity search schemes, Zheng et al. [18] and Cui
et al. [19] introduced Yao’s garbled circuits [20] to filter the
query result. Although the similarity search schemes [18], [19]
can return the exact query result, they have another flaw, i.e.,
they were built under the model of two cloud servers. However,
in order to reduce the cloud bills, the data owners may prefer
to deploy a single cloud server in some real scenarios.

VIII. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving exact set similarity search scheme under a single
cloud server. First, we deployed ASPE technique to design
a symmetric-key predicate encryption scheme, which can
determine whether the upper bound of the similarity between
a query vector and a collection of vectors is equal to or
greater than a similarity threshold. Then, we represented the
set records to be binary vectors and employed the B+ tree
to build an index for them. Finally, based on the SPE-Sim
scheme and B+ tree based index, we proposed an efficient
and privacy-preserving set similarity search scheme, which
can achieve efficient set similarity search while preserving
the privacy of set records in the database, query set as well
as the similarity threshold. In our future work, we will (i)
take the set similarity search based on other similarity metric,
such as cosine similarity, into consideration; (ii) consider
other privacy-preserving methods to improve the set similarity
search efficiency.
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